

全球钢号百科!

Global Steel Grade Encyclopedia

GENERAL

ASSAB XW-5 is a high-carbon, high-chromium tool steel alloyed with tungsten, characterised by:

- Highest wear resistance
- High compressive strength
- High surface hardness after hardening
- Good through-hardening properties
- Good stability during hardening
- Good resistance to tempering-back

ASSAB XW-5 has gained widespread acceptance as a steel with exceptional wear resistance, suitable for longlife tooling with low repair and maintenance costs, for maximum production economy.

Turiar Lauraharia 9/	С	Si	Mn	Cr	W
i ypical analysis %	2.05	0.3	0.8	12.7	1.1
Standard specification	AISI De	, (AISI D	93), (WN	r. 1.2436)
Delivery condition	Soft ani	nealed to	o approx	. 240 HB	
Colour code	Red				

APPLICATIONS

ASSAB XW-5 is recommended for applications demanding maximum wear resistance, such as blanking and shearing tools for thin, hard materials; long-run press tools; forming tools; moulds for ceramics and abrasive plastics.

BLANKING AND CUTTING

Application	Work	Work material hardness (HB)	
	thickness	≤180 HRC	>180 HRC
Tools for:			
Blanking, punching, cropping, shearing, trimming, clipping	<3	60-62	56 - 58
Short cold shears for thin materi Shredding knives for plastic waste	als e		56 - 60
Circular shears for light gauge sh cardboard etc.	eet,		58 - 60
Clipping, trimming tools for forgi	ngs		56 - 60
Wood milling cutters, reamers, b	roachers		56 - 58

FORMING AND OTHER APPLICATIONS

Application	>180 HRC
Tools for:	
Bending, raising, deep drawing, rim-rolling, spinning and flow-forming	56 - 62
Tube forming tools, section forming rolls	58 - 62
Cold drawing / sizing dies	58 - 62
Compacting dies for metal powder parts	58 - 62
Master hobs for cold hobbing	56 - 60
Dies for moulding of: Ceramics, bricks, tiles, grinding wheels, tablets, abrasive plastics	58 - 62
Gauges, measuring tools, guide rails, bushes, sleeves, knurling tools, sandblast nozzles	58 - 62
Crushing hammers	56 - 60
Swinging blocks	56 - 60

PROPERTIES

PHYSICAL PROPERTIES

Hardened and tempered to 62 HRC.

Temperature	20 °C	200 °C	400 °C
Density kg/m³	7 700	7 650	7 600
Modulus of elasticity MPa	194 000	189 000	173 000
Coefficient of thermal expansion per °C from 20 °C	-	11.0 x 10 ⁻⁶	10.8 x 10 ⁻⁶
Thermal conductivity W/m °C	20.5	21.5	23
Specific heat J/kg °C	460	-	-

COMPRESSIVE STRENGTH

Approximate compressive yield strength at room temperature.

Hardness, HRC	Compressive yield strength Rc0.2 (MPa)
50	1 600
55	1 850
60	2 100
62	2 200

HEAT TREATMENT

SOFT ANNEALING

Protect the steel and heat through to 850 $^{\circ}$ C. Cool in the furnace at 10 $^{\circ}$ C per hour to 650 $^{\circ}$ C, then freely in air.

STRESS RELIEVING

After rough machining the tool should be heated through to 650° C, holding time 2 hours. Cool slowly to 500° C, then freely in air.

HARDENING

Pre-heating temperature: 600–700°C. Austenitising temperature: 920–1000°C, normally 940 - 980 °C

Temperature °C	Soaking time* minutes	Hardness before tempering HRC
920	60	65 ± 2
960	30	66 ± 2
1000	15	66 ± 2

 \ast Soaking time = time at hardening temperature after the tool is fully heated through

Protect the part against decarburisation and oxidation during hardening.

QUENCHING MEDIA

- Circulating air or atmosphere
- Vacuum (high speed gas with sufficient overpressure)
- Martempering bath or fluidised bed at 180 500°C, then cooling in air
- Warm oil, approx. 80°C

Note : Temper the tool as soon as its temperature reaches $50 - 70^{\circ}$ C.

ASSAB XW-5 | 3

HARDNESS, RETAINED AUSTENITE AND GRAIN SIZE AS FUNCTIONS OF AUSTENITISING TEMPERATURE

TEMPERING

Choose the tempering temperature according to the hardness required by reference to the tempering graph.

Temper at least twice with intermediate cooling to room temperature. The lowest tempering temperature which should be used is 180° C. The minimum holding time at temperature is 2 hours.

TEMPERING GRAPH

DIMENSIONAL CHANGES

DIMENSIONAL CHANGES DURING HARDENING

Sample plate: 100 x 100 x 25 mm

Hardening from	n 960°C	Width%	Length %	Thickness %
Oil handanad	min	-0.05	+0.07	0
Oli hardened	max	-0.15	+0.09	-0.08
Mantanaaa	min	-0.01	+0.07	-
Martempered	max	-0.03	+0.09	-0.16
	min	+0.05	+0.09	-
Air hardened	max	+0.06	+0.13	+0.05

DIMENSIONAL CHANGES DURING TEMPERING

Note : The dimensional changes during hardening and tempering should be added together.

SUB-ZERO TREATMENT

Pieces requiring maximum dimensional stability should be sub-zero treated, as volume changes may occur in the course of time. This applies, for example, to measuring tools like gauges and certain structural components.

Immediately after quenching, the piece should be subzero treated, followed by tempering. ASSAB XW-5 is commonly sub-zero treated between -150° C and -196° C for 3 - 4 hours, although occasionally -40° C and lower temperatures (e.g., -80° C) are used due to constraints of the sub-zero medium and equipment available.

Sub-zero treatment will give a hardness increase of 1 - 3 HRC.

Avoid intricate shapes as there is a risk of cracking.

MACHINING RECOMMENDATIONS

The cutting data below are to be considered as guiding values which must be adapted to existing local conditions.

Condition: Soft annealed condition ~240 HB

TURNING

Cutting data	Turning wi	ith carbide	Turning with High speed	
parameters	Rough turning	Fine turning	steel Fine turning	
Cutting speed (v _c), m/min	70 – 100	100 – 150	8 - 12	
Feed (f) mm/rev	0.3 – 0.6	≤ 0.3	≤ 0.3	
Depth of cut (a _p) mm	2 – 6	0.5 – 2	0.5 - 3	
Carbide designation ISO	K20, P20 - P30 Coated carbide*	K15, P10 Coated carbide*	-	

* Use a wear-resistant Al₂O₃ coated carbide grade

DRILLING

HIGH SPEED STEEL TWIST DRILL

Drill diameter mm	Cutting speed (v _c) m/min	Feed (f) mm/r
≤ 5	10 – 12 *	0.05 - 0.10
5 – 10	10 – 12 *	0.10 – 0.20
10 – 15	10 – 12 *	0.20 – 0.25
15 – 20	10 – 12 *	0.25 – 0.30

* For coated HSS drill v = 16 - 18 m/min.

CARBIDE DRILL

	C		Type of drill		
Cutting data parameters		Indexable insert	Solid carbide	Carbide tip ¹⁾	
	Cutting speed (v _c), m/min	100 – 130	50 – 70	30 – 40	
	Feed (f) mm/r	0.05 – 0.25 ²⁾	0.10 – 0.25 ²⁾	0.15 – 0.25 ²⁾	

 $^{\mbox{\tiny 1)}}$ Drill with replaceable or brazed carbide tip

²⁾ Depending on drill diameter

MILLING

FACE AND SQUARE SHOULDER MILLING

Cutting data	Milling with carbide		
parameters	Rough milling	Fine milling	
Cutting speed (v _c), m/min	90 – 110	110 – 130	
Feed (f _z) mm/tooth	0.2 - 0.4	0.1 – 0.2	
Depth of cut (a _p), mm	2 – 4	≤ 2	
Carbide designation ISO	K20, P10 - P20 Coated carbide*	K15, - P10 Coated carbide*	

* Use a wear-resistant Al₂O₃ coated carbide grade

END MILLING

Cutting data	Type of milling			
parameters	Solid carbide	Carbide indexable insert	High speed steel	
Cutting speed (v _c), m/min	30 – 70	40 – 80	10 – 15 ¹⁾	
Feed (f _z) mm/tooth	0.03 – 0.20 ²⁾	0.08 – 0.20 ²⁾	0.05 – 0.35 ²⁾	
Carbide designation ISO	-	K15, P10 – P20 Coated carbide	_	

¹⁾ For coated HSS end mill Vc = 20 - 25 m/min.

²⁾ Depending on radial depth of cut and cutter diameter

³⁾ Use a wear resistant Al_2O_3 coated carbide grade

GRINDING

Wheel recommendation

Type of grinding	Soft annealed	Hardened
Face grinding straight wheel	A 46 HV	B107 R75 B3 ¹⁾ A 46 HV
Face grinding segments	A 24 GV	3SG 46 FVSPF ¹⁾ A 36 FV
Cylindrical grinding	A 46 LV	B126 R75 B3 ¹⁾ A 60 KV
Internal grinding	A 46 JV	B107 R75 B3 ¹⁾ A 60 IV
Profile grinding	A 100 LV	B107 R100 V ¹⁾ A 100 JV

¹⁾ The first choice is a CBN grinding wheel for this operation

WELDING

There is a general tendency for tool steel to crack after welding. When welding is required, take proper precautions with regards to joint preparation, filler material selection, preheating, welding procedure and postweld heat treatment to ensure good welding results. If the tool is to be polished or photo-etched, it is necessary to work with an electrode type of matching composition.

	Welding method	TIG	MMA		
	Preheating temperature	200 - 250 °C	200 - 250 °C		
	Filler material	Inconel 625 type (buffering layers) UTP A73G2 UTP A67S UTP A696 CastoTIG 53	Inconel 625 type (buffering layers) UTP 67S Castolin 2 Castolin 6		
	Maximum interpass temperature	400°C	400°C		
	Post weld cooling	20 - 40 °C/h the first 2 h then freely in air at <70°C			
	Hardness after welding	Inconel 625 type (buffering layers) 280 HB UTP A73G2 53 - 56 HRC UTP A67S 55 - 58 HRC UTP A696 / CastoTIG 5	Inconel 625 type (buffering layers) 280 HB UTP 67S 55 - 58 HRC Castolin 2 56 - 60 HRC Castolin 6 59 - 61 HRC		
	Heat treatment after welding:				
	Hardened condition	Temper 10 - 20°C below the original tempering temperature.			
	Soft annealed condition	Soft anneal according to the "Heat treatment" recommendation.			

¹⁾ Preheating temperature must be established throughout the tool and must be maintained for the entire welding process, to prevent weld cracking. For hardened and tempered tool, the actual preheat temperature used is typically lower than the original tempering temperature to prevent a drop in hardness.

²⁾ The temperature of the tool in the weld area immediately before the second and subsequent pass of a multiple pass weld. When exceeded, there is a risk of distortion of the tool or soft zones around the weld.

³⁾ Should not be used for more than 4 layers because of the increased risk of cracking.

ASSAB XW-5 | 5

SURFACE TREATMENT

NITRIDING AND NITROCARBURISING

Nitriding gives a hard surface, which is very resistant to wear and erosion. A nitrided surface also increases the corrosion resistance.

- For best results, the following steps should be followed:
- 1. Rough machining
- 2. Stress tempering at 650°C
- 3. Grinding
- 4. Nitriding

Process	Time, h	Surface hardness HV ₀₂	Depth * mm	
	10	1 000	0.12	
Gas nitriding at 510°C	30	1 000	0.16	
	60	1 000	0.18	
Plasma nitriding at	10	1 050	0.13	
	30	1 050	0.16	
100 C	60	1 050	0.19	
Gas nitrocarburising at 580°C	2.5	700	0.07	

ELECTRICAL DISCHARGE MACHINING — EDM

If EDM is performed in the hardened and tempered condition, the EDM'd surface is covered with a resolidified layer (white layer) and a rehardened and untempered layer, both of which are very brittle and hence detrimental to the tool performance.

When a profile is produced by EDM, it is recommended to finish with "fine-sparking", i.e., low current, high frequency. For optimal performance, the EDM'd surface should be ground/polished to remove the white layer completely. The tool should then be retempered at approx. 25°C below the highest previous tempering temperature.

FURTHER INFORMATION

Please contact your local ASSAB office for further information on the selection, heat treatment, application and availability of ASSAB tool steel.

RELATIVE COMPARISON OF ASSAB COLD WORK TOOL STEEL

MATERIAL PROPERTIES AND RESISTANCE TO FAILURE MECHANISMS

	Hardness/				Resistance to		Fatigue cracking resistance	
ASSAB Grade	Resistance to plastic deformation	Machinability	Grindability	Dimension stability	Abrasive wear	Adhesive wear/Galling	Ductility/ resistance to chipping	Toughness/ gross cracking
Conventional cold work tool steel								
ASSAB DF-3								
ASSAB XVV-5								
ASSAB XVV-10								
ASSAB XW-42								
Calmax								
Caldie (ESR)								
ASSAB 88								
Powder metallurgical tool steel								
Vanadis 4 Extra*								
Vanadis 8*								
Vancron*								
Powder metallurgical high speed steel								
ASSAB PM 23*								
ASSAB PM 30*								
ASSAB PM 60*								
Conventional high speed steel								
ASSAB M2								