

全球钢号百科!

Global Steel Grade Encyclopedia

涵盖的行业或国家与地区类别

美国钢铁学会

德国工业标准

i空航天材料规范

JB

UNI

意大利标准

SS

日本汽车标准组织

EN 欧洲标准

国机械行业标准

统一编号系统

美国机械工程师协会

ASME

瑞典标准

日本工业标准

DATA SHEET

FX-XTRA[®]

~AISI N/A - ~W.Nr. 1.2714 Mod HOT WORK TOOL STEEL

TYPICAL APPLICATIONS

- Hammer Dies & Rams
- Press Dies and Coining Dies
- Sow Blocks and Knockout Pins
- · Punches and Inserts
- Headers and Insert Die Holders
- Gear Applications

GENERAL:

Delivery Condition:

Hardened and tempered

Hardness Range:

Finkl Std.	BHN	HRC
ХН	495-534	51-54
н	444-477	47-50
T1	401-429	43-46
T2	352-388	38-42
ТЗ	311-341	33-37
Τ4	277-302	29-32
Annealed	229 approx	20 approx.

FX-XTRA[®], also known as **FX**[®], is a Ni-Cr-Mo steel offered in a wide range of heat treated conditions for versatile service in the forging industry.

The most popular, **FX**[®] Temper 2 (38-42 HRC) is a remarkably strong die steel with balanced wear and fracture toughness characteristics.

The more ductile, **FX**[®] Temper 3 (33-37 HRC) is for die blocks, rams, shafts, die holders, v-guides, sow blocks and other general industrial uses favoring fracture toughness over abrasion demands.

Higher hardness FX° Temper 1 (43-46 HRC) or Temper H (47-50 HRC) is for applications where higher die temperatures and cavity pressures, or wear-prone components demand more abrasion resistance.

Typical Chemical Analysis* - % weight

С	Mn	Si	Ni	Cr	Мо	V
0.50	0.85	0.25	0.90	1.15	0.50	0.07

*Covered under one or more of the following U.S. Patents: 5,496,516; 5,827,376; 6,398,885

FX-XTRA® is quenched in water. Best properties in steel are produced with the highest achievable quench severity.

FX-XTRA® is characterized by:

- Good Temper Resistance
- High Toughness
- Good Wear Resistance
- Through-hardenability up to 20" thick. For larger dies, we recommend grade DURODI[®] or hardening and tempering after contour roughing in the annealed condition.

Machinability

Machinability at all hardness levels is enhanced through patented micro-alloying additions, but where maximum machinability is desired, a fully annealed condition (approximately 229 HB) is available.

Note: Provided technical data and information in this data sheet are typical values. Normal variations in chemistry, size and conditions of heat treatment may cause deviations from these values. We suggest that information be verified at time of enquiry or order. For additional data or metallurgical assistance, please contact us.

www.steels.org.cn

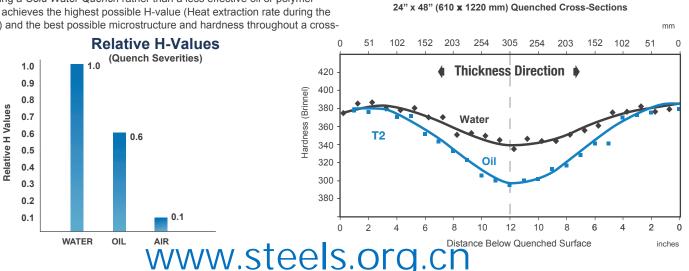
DATA SHEET HOT WORK TOOL STEEL **FX-XTRA®**

Tested Block Hardness Category Test Elongation Reduction in 2" Temperature Tensile Strength Yield Strength Area .505" ksi MPa ksi MPa 12.5 Temper H 12.0 444-477 BHN 15.0 16.0 12.7 12.5 **Temper 1** 13.0 401-429 BHN 15.2 17.0 24.0 15.5 15.8 17 2 Temper 2 16.5 352-388 BHN 18.2 20.5 23.8 22.8 18.2 17.5 19.0 22.0 Temper 3 21.8 311-341 BHN 22.0 24.2 28.0 36.8 54.0

FX® TENSILE PROPERTIES 1" Laboratory Test Bars, Longitudinal Capability Testing

Mechanical Properties for Commercial-Sized Die Blocks

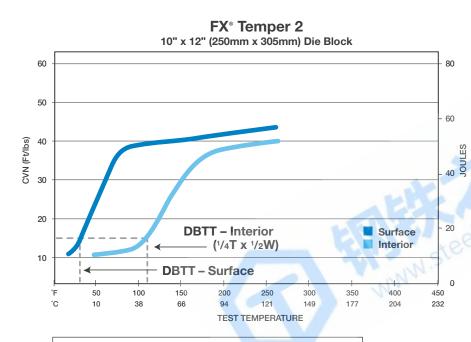
Mechanical properties developed from laboratory-sized test bars, as in the above table, are useful for comparing properties to other grades of steel from similar-sized test bars. Full-sized blocks, however, experience a "masseffect" during the quenching process that reduces the effectiveness of the quench. The extent of the hardness and strength loss is determined by the cross-section size and test depth below the quench surface. Properties of full-sized blocks should be viewed with this factor taken into account.


The Water Quench Advantage

Quench Severity

Employing a Cold Water Quench rather than a less effective oil or polymer guench achieves the highest possible H-value (Heat extraction rate during the guench) and the best possible microstructure and hardness throughout a crosssection.

Hardness Profile Comparison


Water versus Oil Quench

DATA SHEET HOT WORK TOOL STEEL FX-XTRA®

Impact Toughness—Ductile-Brittle Transition Temperature (DBTT)

The DBTT is common to all die steels, and is the temperature where the fracture characteristics transition from a brittle, crack-prone condition to a more ductile, crack-resistant condition. The DBTT is influenced by the chemistry, hardness and microstructure of the steel. Therefore, the DBTT may differ between surface and interior locations of die blocks. Heating beyond the DBTT offers a rapid improvement to impact toughness until the "Upper Energy Shelf" is reached.

Die Preheating

The DBTT for a die block is influenced by the hardness and microstructure. For this reason, the minimum recommended die preheating temperatures change with block thickness and hardness according to the provided table.

Selective Shank Tempering

For high hardness die blocks (T1, TH, TXH) selective tempering is available to reduce hardness only on the shank side by approximately one Finkl "Temper Range", or about four Rockwell points. The modified shank hardness gradually transitions to the base hardness at approximately three-inches below the shank surface. This option improves machinability and fracture toughness in the critical shank area.

Physical Properties

Test Temperature	20°C/68°F	200°C/390°F	400°C/750°F	
Density	7800 Kg/m³	7750	7700	
	0.282 Ibs/in ³	0.280	0.277	
Coefficient of Thermal	11.9x10 ⁻⁶ cm/cm/°C	12.7x10⁻⁵	13.6x10⁻ੰ	
Expansion	6.6x10⁵ in/in/°F	7.0x10-6	7.5x10⁵	
Thermal	29.0 J/m²/m/s/°C	29.5	31.0	
Conductivity	202 BTU/ft²/in/hr/°F	205	216	
Modulus	205x10 ³ N/mm ²	200x10 ³	185x10 ³	
of Elasticity	29.7x10 ⁶ Ibs/in ²	29.0x10⁵	26.8x10⁵	
Specific	460 J/Kg °C	492	538	
Heat	0.110 BTU/lb °F	0.118	0.129	
Poisson's Ratio	0.3	0.3	0.3	

Recommended FX [®] Die Steel Minimum Preheating Temperatures °F										
	Die Block (Thickness)							ess)		
				inches mm	5 127	10 254	15 381	20 508		
	1			хн	300	350	NA	NA		
nce	Increased Fracture Sensitivity	6	1	н	250	300	350	350		
lesista		DIE HARDNESS		1	200	250	300	300		
Wear F		Increased Fractur	IE HAR		2	70	150	200	200	
eased			eased F			3	70	70	200	200
Incr					4	70	70	70	200	
		Conve °F °C	7	ion: 70 150 20 65		250 30 120 15				

www.steels.org.cn

DATA SHEET HOT WORK TOOL STEEL **FX-XTRA®**

Heat Treating FX-XTRA®

Sub-Critical Anneal

Softening may be achieved through *Sub-Critical Annealing* by holding at 1220°F (660°C) for an extended period, typically 1.5 hrs/inches (1.5 hrs/25 mm). Expected hardness is approximately 248 BHN maximum.

Full Anneal

Softening with additional refinement to the microstructure may be achieved through a Full Anneal:

- Heat to 1440/1460°F (780/800°C) and Hold 1/2 hr./inch (25mm)
- Drop to 1220°F (660 °C) and Hold 4 hrs.
- Furnace Cool to 800°F (425°C)
- Air Cool to ambient temperature

Expected hardness is approximately 229 BHN

Tempering

Lower hardness may be achieved by heating above the tempering temperature used to establish the existing hardness of the die block. Nominal tempering temperatures employed to establish the standard hardness ranges are:

Tempering Table Nominal Tempering Temperatures for Water-Quenched Forgings

Temperature	Finkl Std.	BHN	HRC
450°F (232°C)	ХН	(-)!)'(51-54
880°F (471°C)	н	(((!(++	47-50
1020°F (549°C)	T1	(\$%(&-	43-46
1120°F (604°C)	T2	') &!' , ,	38-42
1180°F (638°C)	Т3	' %⁄/' (%	33-37
1220°F (660°C)	T4	&++!' \$	29-32

Your selection of welding rod should be discussed with a welding rod supplier. Beyond the choice of welding rod, there are many variables affecting the success of a weld. One common cause of failure is an embrittled Heat Affected Zone (HAZ). To minimize the risk of this type of failure, a preheating and post-heating procedure should be employed:

- Ú¦^@•ækk€€_ØÁQtGÍ_ÔD
- TænājoænājÁ(ājā[`{ Áj -Á, €€_0ÁÇG€€_ÔDÁsĭ ¦āj * Á, ^|åāj * Á
- Ú[•c@æø/Stress RelievingKV[Áæç[ãå/Á[-∞}]ā/*/[Áb@Ábæ^Á @æbå}^••É@æa/4[Áæc^{]^!æč!^Áb@æb/áb Á €Á_Ø/4CH€ÁÔD/áb^|[_ Á c@ Ác^{]^!ā}*Ác^{]^!æč!^Á •^å/4[Á•cæà]ã@áb@Ábæ^Á @æbå}^••ÁQ^^Á/^{]^!ā/*Á/æà|^ÁaboveDÈ

Hardening

Increasing the hardness requires heating to an austenitizing temperature followed by a quenching operation. Some oxidation/decarburization will occur on the block surface unless heating is performed in a vacuum or protective atmosphere furnace. Quenching is a high stress operation introducing a risk of cracking, particularly for a machined block with contours, sharp edges, drilled holes or thin-web features. For such product, employing a quenchant with a lower quenchseverity rating will lower the risk of cracking.

- Heat to 1550/1600°F (840/870°C) and Hold 1/2 hr./ inch (25mm)
- Drop to 1450°F (790 °C) and Hold 2 hrs.
- Quench (Oil, Polymer or Molten salt bath)
- Immediately temper according to the Tempering Table to the left.

www.steels.org.cn